How to Perform Data Cleaning in Excel: Step-by-Step Guide
Learn how to perform data cleaning in Excel using built-in features and functions. Discover methods to clean, standardize, and prepare data for analysis in Excel.
How to Perform Data Cleaning in Excel: Step-by-Step Guide
If you need to clean data in Excel but don't know where to start, you need a systematic approach. 74% of Excel users perform data cleaning regularly but lack a structured process.
By the end of this guide, you'll know how to perform data cleaning in Excel—using built-in features, functions, and tools to clean, standardize, and prepare your data efficiently.
Quick Summary
- Use Excel functions - TRIM, CLEAN, SUBSTITUTE for text cleaning
- Remove duplicates - Data > Remove Duplicates feature
- Standardize formats - Format Cells and Text to Columns
- Handle missing values - Find & Replace and conditional formatting
Common Data Cleaning Tasks in Excel
- Remove duplicates - Eliminate duplicate rows
- Trim spaces - Remove extra whitespace
- Standardize text - Fix case inconsistencies
- Clean special characters - Remove unwanted characters
- Convert data types - Text to numbers, dates
- Handle missing values - Find and fill blanks
- Standardize formats - Dates, numbers, text
- Split columns - Separate combined data
- Merge columns - Combine data
- Validate data - Check for errors
Step-by-Step: Perform Data Cleaning in Excel
Step 1: Remove Duplicates
Eliminate duplicate rows from your dataset.
Identify Duplicates
Check for duplicates:
- Select data range (including headers)
- Data > Remove Duplicates
- Preview shows duplicate count
- Click Cancel to see first
Or use conditional formatting:
- Select data range
- Home > Conditional Formatting > Highlight Cells Rules > Duplicate Values
- Duplicates highlighted in color
Remove Duplicates
Method: Remove Duplicates Feature
- Select data range (including headers)
- Data > Remove Duplicates
- Choose columns to check:
- Check all columns = exact duplicates
- Check key columns = duplicates by identifier
- Click OK
- Excel removes duplicates and shows count
Example:
- Check "Email" column for duplicate customers
- Check all columns for exact duplicate rows
Step 2: Clean Text Data
Remove extra spaces and standardize text.
Remove Extra Spaces
Use TRIM function:
=TRIM(A2)
Removes leading, trailing, and extra spaces.
Apply to column:
- Insert new column next to data
- Enter formula:
=TRIM(A2) - Copy formula down entire column
- Copy formula column
- Paste Special > Values over original column
- Delete formula column
Remove Non-Printable Characters
Use CLEAN function:
=CLEAN(A2)
Removes non-printable characters (line breaks, tabs, etc.).
Combine with TRIM:
=TRIM(CLEAN(A2))
Removes both spaces and non-printable characters.
Standardize Text Case
Convert to lowercase:
=LOWER(A2)
Convert to uppercase:
=UPPER(A2)
Convert to title case:
=PROPER(A2)
Apply:
- Insert helper column
- Enter formula
- Copy down
- Paste as values over original
- Delete helper column
Step 3: Handle Missing Values
Find and handle blank cells and missing data.
Find Missing Values
Method 1: Go To Special
- Select data range
- Press F5 (Go To)
- Click Special
- Choose Blanks
- Click OK
- All blanks selected
Method 2: Filter
- Select header row
- Data > Filter
- Click dropdown on column
- Uncheck all except (Blanks)
- Blanks filtered
Fill Missing Values
Fill with value:
- Select blanks (using Go To Special)
- Type value (e.g., "N/A" or 0)
- Press Ctrl+Enter
- All blanks filled
Fill with formula:
- Select blank cell
- Enter formula referencing above cell
- Copy formula to all blanks
Fill with average:
- Calculate average in separate cell
- Select blanks
- Paste average value
- Press Ctrl+Enter
Step 4: Convert Data Types
Convert text to numbers, dates, etc.
Convert Text to Numbers
Method 1: Text to Columns
- Select text number column
- Data > Text to Columns
- Choose General or Number
- Click Finish
- Text converted to numbers
Method 2: VALUE function
=VALUE(A2)
Converts text to number.
Method 3: Multiply by 1
=A2*1
Forces conversion to number.
Convert Text to Dates
Method 1: Text to Columns
- Select date column
- Data > Text to Columns
- Choose Date format
- Select format (MDY, DMY, YMD)
- Click Finish
- Dates converted
Method 2: DATEVALUE function
=DATEVALUE(A2)
Converts text date to Excel date.
Then format:
- Select date column
- Right-click > Format Cells > Date
- Choose format
- Click OK
Step 5: Standardize Date Formats
Ensure all dates use consistent format.
Detect Date Issues
Check date formats:
- Select date column
- Look for inconsistencies:
- Some as dates (numbers)
- Some as text
- Different formats
Standardize Dates
Convert all to dates:
- Use Text to Columns (if text dates)
- Format consistently:
- Right-click > Format Cells > Date
- Choose format (e.g., YYYY-MM-DD)
- Click OK
Apply to all:
- Select entire date column
- Apply format
- All dates display consistently
Step 6: Standardize Number Formats
Apply consistent number formatting.
Format Currency
Apply currency format:
- Select number column
- Right-click > Format Cells
- Choose Currency
- Select symbol ($, €, £)
- Set decimal places (usually 2)
- Click OK
Format Percentages
Apply percentage format:
- Select percentage column
- Right-click > Format Cells
- Choose Percentage
- Set decimal places
- Click OK
Note: Excel multiplies by 100, so 0.15 becomes 15%
Format Numbers
Apply number format:
- Select number column
- Right-click > Format Cells
- Choose Number
- Set decimal places
- Check Use 1000 Separator if needed
- Click OK
Step 7: Remove Special Characters
Clean unwanted characters from data.
Remove Specific Characters
Use SUBSTITUTE function:
=SUBSTITUTE(A2, "#", "")
Removes # character.
Remove multiple:
=SUBSTITUTE(SUBSTITUTE(A2, "#", ""), "@", "")
Removes both # and @.
Remove Line Breaks
Remove line breaks:
=SUBSTITUTE(SUBSTITUTE(A2, CHAR(10), " "), CHAR(13), " ")
Replaces line breaks with spaces.
Find & Replace
Remove characters:
- Press Ctrl+H (Find & Replace)
- Find: Enter character to remove
- Replace: Leave blank
- Click Replace All
- Characters removed
Step 8: Split and Combine Columns
Separate or merge column data.
Split Columns
Text to Columns:
- Select column to split
- Data > Text to Columns
- Choose delimiter:
- Delimited - Comma, space, etc.
- Fixed width - Specific positions
- Set delimiter or positions
- Preview split
- Click Finish
- Data split into columns
Example: Split "John Doe" into "John" and "Doe"
Combine Columns
Use CONCATENATE or &:
=A2&" "&B2
Combines with space.
=CONCATENATE(A2, " ", B2)
Same result.
Apply:
- Insert new column
- Enter formula
- Copy down
- Paste as values
- Delete original columns
Step 9: Validate Data
Check data for errors and inconsistencies.
Data Validation Rules
Create validation:
- Select cells
- Data > Data Validation
- Choose criteria:
- List - Dropdown choices
- Whole number - Numeric range
- Date - Date range
- Text length - Character limit
- Set rules
- Click OK
Find Errors
Check for errors:
- Select data range
- Home > Find & Select > Go To Special
- Choose Formulas
- Check Errors
- Click OK
- All errors selected
Conditional Formatting for Validation
Highlight errors:
- Select data range
- Home > Conditional Formatting > Highlight Cells Rules
- Choose rule (e.g., "Duplicate Values", "Text that Contains")
- Set format
- Click OK
- Issues highlighted
Step 10: Final Review and Save
Verify cleaning and save cleaned data.
Review Changes
Check cleaned data:
- Duplicates removed
- Text cleaned (spaces, case)
- Missing values handled
- Data types correct
- Formats standardized
- Special characters removed
- Data validated
- No errors
Save Cleaned Data
Save as new file:
- File > Save As
- Choose location
- Enter filename (e.g., "data_cleaned.xlsx")
- Click Save
- Original file preserved
Or save as CSV:
- File > Save As
- File type: CSV (Comma delimited)
- Save
- Cleaned CSV ready
Real Example: Cleaning Data in Excel
Before (Messy Data):
Dataset: 1,000 customer records
Issues:
- 50 duplicate rows
- Inconsistent text case
- Extra spaces
- Mixed date formats
- Numbers as text
- Missing email addresses
Cleaning Process:
Step 1: Remove duplicates
- Removed 50 duplicate rows
- 950 records remaining
Step 2: Clean text
- Applied TRIM to all text columns
- Standardized to Title Case
- Removed extra spaces
Step 3: Handle missing values
- Filled missing emails with "unknown@email.com"
- Documented 5% missing rate
Step 4: Convert data types
- Converted text numbers to numeric
- Converted text dates to date format
Step 5: Standardize formats
- Dates: YYYY-MM-DD
- Numbers: 2 decimal places
- Text: Title Case
Result:
- Clean dataset: 950 records
- All formats standardized
- Ready for analysis
Excel Cleaning Checklist
Use this checklist when cleaning data in Excel:
- Removed duplicates
- Cleaned text (TRIM, CLEAN, case)
- Handled missing values
- Converted data types
- Standardized date formats
- Standardized number formats
- Removed special characters
- Split/combined columns (if needed)
- Validated data
- Reviewed cleaned data
- Saved cleaned file
Mini Automation Using RowTidy
You can automate Excel data cleaning using RowTidy, then use Excel for review and validation.
The Problem:
Cleaning data in Excel manually is time-consuming:
- Applying functions to each column
- Removing duplicates
- Standardizing formats
- Handling missing values
The Solution:
Use RowTidy for automated cleaning, Excel for review:
- Upload file to RowTidy - Drag and drop
- AI cleans data - Removes duplicates, standardizes formats
- Download cleaned file - Get Excel file
- Review in Excel - Validate and make final adjustments
Workflow:
- RowTidy: Automated cleaning (fast)
- Excel: Review and validation (control)
Time saved: 2-4 hours manual Excel cleaning → 5 minutes RowTidy + 30 minutes Excel review
Use RowTidy for initial cleaning, then Excel for final review and validation. Try RowTidy's automated cleaning →
FAQ
1. How do I clean data in Excel?
Use Excel functions (TRIM, CLEAN), Remove Duplicates feature, Text to Columns, Find & Replace, and formatting tools to clean data systematically.
2. What Excel functions are best for data cleaning?
TRIM (spaces), CLEAN (non-printable), SUBSTITUTE (characters), VALUE (text to number), DATEVALUE (text to date), UPPER/LOWER/PROPER (case).
3. How do I remove duplicates in Excel?
Select data range, Data > Remove Duplicates, choose columns to check, click OK. Excel removes duplicates and shows count.
4. How do I standardize text in Excel?
Use TRIM to remove spaces, CLEAN for non-printable characters, UPPER/LOWER/PROPER for case. Apply formulas, then paste as values.
5. How do I convert text to numbers in Excel?
Use Text to Columns (Data > Text to Columns, choose Number), or VALUE function, or multiply by 1. Text to Columns is easiest.
6. How do I handle missing values in Excel?
Use Go To Special (F5 > Special > Blanks) to find, then fill with values, formulas, or averages. Or use Find & Replace.
7. Should I use Excel or RowTidy for data cleaning?
Use RowTidy for speed and automation, Excel for review and validation. Best workflow: RowTidy cleans, Excel reviews.
8. How long does Excel data cleaning take?
Depends on dataset size: small (1000 rows) = 1-2 hours, medium (10,000 rows) = 2-4 hours, large (100,000 rows) = 4-8 hours. RowTidy cleans in minutes.
9. Can I automate Excel data cleaning?
Partially. Use Power Query for reusable workflows, or VBA for automation. RowTidy provides full automation without coding.
10. What's the best Excel data cleaning workflow?
(1) Remove duplicates, (2) Clean text, (3) Handle missing values, (4) Convert types, (5) Standardize formats, (6) Validate, (7) Review, (8) Save. Or use RowTidy first, then Excel for review.
Related Guides
- How to Clean Messy Dataset →
- Excel Data Cleaning Best Practices →
- 5 Steps in Data Cleansing →
- How to Clean Data in Excel Sheet →
Conclusion
Performing data cleaning in Excel requires using built-in features (Remove Duplicates, Text to Columns), functions (TRIM, CLEAN, VALUE), and formatting tools systematically. Follow a structured process: remove duplicates, clean text, handle missing values, convert types, standardize formats, validate, and review. Use RowTidy for automated cleaning, then Excel for final review and validation.
Try RowTidy — automate data cleaning, then use Excel for review and validation to ensure data quality.