Tutorials

How to Standardize Product Catalogs in Excel: Complete Guide

Learn how to clean and standardize product catalog data in Excel. Transform messy product information into consistent, searchable catalogs.

RowTidy Team
Dec 3, 2024
11 min read
Excel, Product Catalogs, Data Standardization, E-commerce, Data Cleaning

How to Standardize Product Catalogs in Excel: Complete Guide

Product catalogs are the backbone of e-commerce, inventory management, and sales operations.
But when product data comes from multiple sources—suppliers, vendors, internal systems—you end up with inconsistent formats, duplicate entries, and missing information.

This guide shows you how to standardize product catalogs in Excel, transforming messy product data into clean, consistent, and searchable catalogs.


🚨 Why Product Catalog Standardization Matters

The Problem:

  • Same product, different names: "iPhone 13" vs "Apple iPhone 13 128GB" vs "iPhone-13"
  • Inconsistent categories: "Electronics" vs "Electronics > Phones" vs "Mobile Devices"
  • Mixed formats: Prices as "$99.99", "99.99 USD", "100"
  • Missing data: Products without SKUs, descriptions, or images
  • Duplicate entries: Same product listed multiple times

The Impact:

  • Poor search results: Customers can't find products
  • Inventory errors: Duplicate SKUs cause stock issues
  • Pricing mistakes: Inconsistent formats lead to errors
  • Integration failures: Systems can't match products
  • Lost sales: Incomplete product information

🛠 Step 1: Standardize Product Names

Problem: Inconsistent Naming

Before:

Product Name
iPhone 13 128GB Black
Apple iPhone 13 - 128GB - Black
iPhone13-128GB-Black
Apple iPhone 13, 128GB, Black Color

After:

Product Name Brand Model Variant
iPhone 13 128GB Black Apple iPhone 13 128GB Black

Solution: Name Parsing

Extract brand:

=IF(ISNUMBER(SEARCH("Apple", A2)), "Apple", IF(ISNUMBER(SEARCH("Samsung", A2)), "Samsung", "Other"))

Standardize format:

=TRIM(PROPER(SUBSTITUTE(SUBSTITUTE(A2, "-", " "), ",", " ")))

Remove extra characters:

=SUBSTITUTE(SUBSTITUTE(SUBSTITUTE(A2, "-", " "), "_", " "), "  ", " ")

🛠 Step 2: Standardize SKUs

Problem: Inconsistent SKU Formats

Before:

SKU
IPH13-128-BLK
iph13_128_blk
IPH-13-128GB-BLACK
12345

After:

SKU
IPH13-128-BLK
IPH13-128-BLK
IPH13-128-BLK
12345 (validated)

Solution: SKU Standardization

Convert to uppercase:

=UPPER(A2)

Standardize separators:

=SUBSTITUTE(SUBSTITUTE(A2, "_", "-"), " ", "-")

Validate format:

=IF(AND(LEN(A2)>=5, LEN(A2)<=20, ISNUMBER(SEARCH("-", A2))), "VALID", "INVALID")

Remove duplicates:

  1. Select SKU column
  2. Data > Remove Duplicates
  3. Keep first occurrence

🛠 Step 3: Standardize Categories

Problem: Inconsistent Category Hierarchies

Before:

Category
Electronics
Electronics > Phones
Mobile Devices
Electronics/Phones/Smartphones

After:

Category Level 1 Category Level 2 Category Level 3
Electronics Phones Smartphones
Electronics Phones Smartphones
Electronics Phones Smartphones
Electronics Phones Smartphones

Solution: Category Standardization

Split hierarchical categories:

=LEFT(A2, FIND(">", A2)-1)  ' Level 1
=MID(A2, FIND(">", A2)+2, FIND(">", A2, FIND(">", A2)+1)-FIND(">", A2)-2)  ' Level 2

Map to standard categories:

=IF(ISNUMBER(SEARCH("phone", LOWER(A2))), "Electronics > Phones", A2)

Use VLOOKUP for mapping:

=VLOOKUP(A2, CategoryMapping, 2, FALSE)

🛠 Step 4: Standardize Prices

Problem: Mixed Price Formats

Before:

Price
$99.99
99.99 USD
100
€89.99

After:

Price Currency
99.99 USD
99.99 USD
100.00 USD
89.99 EUR

Solution: Price Standardization

Extract numeric value:

=VALUE(SUBSTITUTE(SUBSTITUTE(SUBSTITUTE(A2, "$", ""), ",", ""), " USD", ""))

Extract currency:

=IF(ISNUMBER(SEARCH("$", A2)), "USD", IF(ISNUMBER(SEARCH("€", A2)), "EUR", "USD"))

Format to 2 decimals:

=ROUND(A2, 2)

Validate price range:

=IF(AND(A2>0, A2<=10000), "VALID", "REVIEW")

🛠 Step 5: Standardize Descriptions

Problem: Inconsistent Descriptions

Before:

Description
Great phone with good camera
iPhone 13 features: 128GB storage, 12MP camera, A15 chip
High-quality smartphone. Excellent performance.

After:

Description Key Features
Apple iPhone 13 with 128GB storage. Features 12MP camera and A15 chip. 128GB Storage, 12MP Camera, A15 Chip

Solution: Description Standardization

Remove extra spaces:

=TRIM(A2)

Capitalize first letter:

=PROPER(LEFT(A2, 1)) & LOWER(MID(A2, 2, LEN(A2)))

Extract key features:

=IF(ISNUMBER(SEARCH("128GB", A2)), "128GB Storage, ", "") & IF(ISNUMBER(SEARCH("camera", A2)), "Camera, ", "")

🛠 Step 6: Handle Missing Data

Problem: Incomplete Product Information

Common Missing Fields:

  • SKU
  • Price
  • Description
  • Category
  • Images
  • Specifications

Solution: Missing Data Handling

Identify missing fields:

=IF(ISBLANK(A2), "MISSING", "COMPLETE")

Fill with defaults:

=IF(ISBLANK(A2), "TBD", A2)

Flag incomplete products:

=IF(OR(ISBLANK(A2), ISBLANK(B2), ISBLANK(C2)), "INCOMPLETE", "COMPLETE")

Prioritize for completion:

  • Products with missing SKUs (critical)
  • Products with missing prices (critical)
  • Products with missing descriptions (important)
  • Products with missing images (nice to have)

🛠 Step 7: Remove Duplicate Products

Problem: Same Product Listed Multiple Times

Identification Methods:

By SKU:

=IF(COUNTIF($A$2:$A$1000, A2)>1, "DUPLICATE", "UNIQUE")

By Name (fuzzy match):

=IF(COUNTIF($B$2:$B$1000, "*" & LEFT(B2, 10) & "*")>1, "POSSIBLE DUPLICATE", "UNIQUE")

By combination of fields:

=IF(COUNTIFS($A$2:$A$1000, A2, $B$2:$B$1000, B2)>1, "DUPLICATE", "UNIQUE")

Removal Strategy:

  1. Keep most complete record
  2. Keep most recent record
  3. Merge information from duplicates
  4. Flag for manual review if unsure

🤖 Advanced: AI-Powered Catalog Standardization

For complex product catalogs, RowTidy can automatically:

  1. Detect Product Patterns

    • Identifies brand, model, variant patterns
    • Learns from your data
    • Suggests standardizations
  2. Map Categories Intelligently

    • Maps similar categories
    • Suggests category hierarchies
    • Handles different naming conventions
  3. Standardize Formats

    • Prices, dates, measurements
    • SKU formats
    • Product names
  4. Detect Duplicates

    • Fuzzy matching for similar products
    • Identifies near-duplicates
    • Suggests merges
  5. Fill Missing Data

    • Suggests values based on similar products
    • Validates against patterns
    • Flags for manual review

Benefits:

  • Handles complex patterns automatically
  • Learns from your data for better results
  • Saves hours of manual work
  • Consistent output across all products

📊 Real Example: E-commerce Product Catalog

Before (Messy Data):

Product Name SKU Price Category
iPhone 13 128GB IPH13-128 $999 Electronics
Apple iPhone 13 - 128GB iph13_128 999 USD Electronics > Phones
iPhone13-128GB-Black IPH-13-128 $999.00 Mobile Devices
iPhone 13, 128GB IPH13-128 999 Electronics/Phones

Issues Identified:

  • Inconsistent product names
  • Different SKU formats
  • Mixed price formats
  • Inconsistent categories
  • Duplicate products (rows 1, 2, 4)

After (Standardized Data):

Product Name SKU Price Currency Category L1 Category L2 Status
iPhone 13 128GB Black IPH13-128-BLK 999.00 USD Electronics Phones ACTIVE
iPhone 13 128GB Black IPH13-128-BLK 999.00 USD Electronics Phones DUPLICATE
iPhone 13 128GB Black IPH13-128-BLK 999.00 USD Electronics Phones DUPLICATE
iPhone 13 128GB Black IPH13-128-BLK 999.00 USD Electronics Phones DUPLICATE

Actions Taken:

  • Standardized product names
  • Unified SKU format
  • Standardized prices (2 decimals, separate currency)
  • Mapped to consistent category hierarchy
  • Identified and flagged duplicates
  • Added status column

✅ Product Catalog Standardization Checklist

Use this checklist when standardizing catalogs:

Product Information:

  • Product names standardized
  • SKUs unique and consistent format
  • Descriptions complete and formatted
  • Categories mapped to standard hierarchy

Pricing:

  • Prices in consistent format
  • Currency clearly identified
  • Decimal places consistent (2 for currency)
  • Price ranges validated

Data Quality:

  • Duplicates identified and removed
  • Missing data flagged or filled
  • All required fields present
  • Data validated for errors

Integration:

  • Format matches system requirements
  • Required fields for import present
  • Data types correct
  • Ready for upload

🔗 Related Guides

  1. Standardize Product Data - Product-specific standardization
  2. Standardize Product Categories - Category management
  3. Create Master Catalog - Master catalog creation
  4. Validate Product SKUs - SKU validation
  5. Complete Excel Data Cleaning Guide - Comprehensive cleaning

📌 Conclusion

Standardizing product catalogs is essential for e-commerce success, inventory management, and system integration. The techniques in this guide will help you:

  • Standardize product names and SKUs
  • Map categories consistently
  • Format prices correctly
  • Remove duplicates
  • Handle missing data

For manual standardization: Use Excel formulas and built-in tools
For automated standardization: Use AI-powered tools like RowTidy
For complex catalogs: Combine multiple techniques

Remember: A standardized catalog is a searchable, manageable, and scalable catalog. Invest time in proper standardization to avoid ongoing data quality issues.


✍️ Ready to standardize your product catalog automatically?

👉 Try RowTidy today and transform your messy product catalog into a clean, standardized, and searchable database. Get started with a free trial and see how AI-powered standardization can improve your product data quality.


This guide is part of our comprehensive series on Excel data management. Check out our other tutorials on data cleaning, data standardization, and catalog management for complete product data solutions.