How to Export Excel Data to JSON: Complete Guide
Learn how to convert Excel data to JSON format. Discover methods using Excel formulas, VBA, Python, and online tools for seamless data export.
How to Export Excel Data to JSON: Complete Guide
JSON (JavaScript Object Notation) is the standard format for web APIs, databases, and modern applications.
Converting Excel data to JSON enables:
- API integrations: Send data to web services
- Database imports: Load data into NoSQL databases
- Web applications: Use Excel data in JavaScript apps
- Data exchange: Share structured data easily
This guide shows you multiple methods to export Excel data to JSON format.
🚨 Why Export Excel to JSON?
Common Use Cases:
- API integration: Send Excel data to REST APIs
- Web development: Use Excel data in web apps
- Database import: Load into MongoDB, Firebase, etc.
- Data sharing: Exchange structured data
- Automation: Integrate with modern systems
JSON Format Example:
[
{
"name": "John Smith",
"email": "john@email.com",
"age": 30
},
{
"name": "Jane Doe",
"email": "jane@email.com",
"age": 25
}
]
🛠 Method 1: Online Converters (Quick & Easy)
When to Use
- One-time conversion
- Small files (< 10MB)
- No technical skills needed
Popular Tools
- ConvertCSV.com: Excel to JSON converter
- Zamzar: File conversion service
- CloudConvert: Supports many formats
Steps
- Upload Excel file
- Select JSON output format
- Click convert
- Download JSON file
Pros:
- ✅ No installation needed
- ✅ User-friendly
- ✅ Quick results
Cons:
- ❌ File size limits
- ❌ Privacy concerns (uploads data)
- ❌ Limited customization
🛠 Method 2: Excel Formulas (Basic)
Problem: Manual JSON Creation
Solution: Build JSON with Formulas
Sample Data:
| Name | Age | |
|---|---|---|
| John | john@email.com | 30 |
| Jane | jane@email.com | 25 |
JSON Formula:
="{" & CHAR(34) & "name" & CHAR(34) & ":" & CHAR(34) & A2 & CHAR(34) & "," &
CHAR(34) & "email" & CHAR(34) & ":" & CHAR(34) & B2 & CHAR(34) & "," &
CHAR(34) & "age" & CHAR(34) & ":" & C2 & "}"
Result:
{"name":"John","email":"john@email.com","age":30}
For Array:
="[" & TEXTJOIN(",", TRUE, JSONRows) & "]"
Limitations:
- Complex for large datasets
- Manual formatting
- Not ideal for nested structures
🛠 Method 3: VBA Macro (Automated)
Problem: Need Automated Conversion
Solution: VBA Script
VBA Code:
Sub ExportToJSON()
Dim ws As Worksheet
Set ws = ActiveSheet
Dim lastRow As Long
lastRow = ws.Cells(ws.Rows.Count, 1).End(xlUp).Row
Dim json As String
json = "["
Dim i As Long
For i = 2 To lastRow
json = json & "{"
json = json & """name"":""" & ws.Cells(i, 1) & ""","
json = json & """email"":""" & ws.Cells(i, 2) & ""","
json = json & """age"":" & ws.Cells(i, 3)
json = json & "}"
If i < lastRow Then
json = json & ","
End If
Next i
json = json & "]"
' Save to file
Dim filePath As String
filePath = ThisWorkbook.Path & "\output.json"
Open filePath For Output As #1
Print #1, json
Close #1
MsgBox "JSON exported to " & filePath
End Sub
How to Use:
- Press Alt+F11 to open VBA editor
- Insert > Module
- Paste code
- Modify column references
- Run macro (F5)
Pros:
- ✅ Automated
- ✅ Handles large datasets
- ✅ Customizable
Cons:
- ❌ Requires VBA knowledge
- ❌ Excel-specific
🛠 Method 4: Python Script (Most Flexible)
Problem: Need Advanced Control
Solution: Python with pandas
Python Code:
import pandas as pd
import json
# Read Excel file
df = pd.read_excel('data.xlsx')
# Convert to JSON
json_data = df.to_json(orient='records', indent=2)
# Save to file
with open('output.json', 'w') as f:
f.write(json_data)
print("JSON exported successfully!")
Installation:
pip install pandas openpyxl
Advanced Options:
# Custom JSON structure
json_data = df.to_json(
orient='records', # Array of objects
indent=2, # Pretty print
date_format='iso' # Date formatting
)
# Nested JSON
json_data = df.groupby('category').apply(
lambda x: x.to_dict('records')
).to_json(indent=2)
Pros:
- ✅ Very flexible
- ✅ Handles complex structures
- ✅ Can process large files
Cons:
- ❌ Requires Python knowledge
- ❌ Need to install libraries
🛠 Method 5: Power Query (Excel Built-in)
Problem: Need Regular Exports
Solution: Power Query Transformation
Steps:
Load Data to Power Query
- Data > Get Data > From File > From Workbook
- Select your Excel file
Transform Data
- Apply any needed transformations
- Clean and structure data
Export to JSON
- Use M code to convert to JSON
- Or use Power Automate for automation
M Code Example:
let
Source = Excel.CurrentWorkbook(){[Name="Table1"]}[Content],
ToJson = Json.FromValue(Source)
in
ToJson
Pros:
- ✅ Built into Excel
- ✅ Can automate
- ✅ Handles transformations
Cons:
- ❌ Requires Power Query knowledge
- ❌ More complex setup
🛠 Method 6: Node.js Script (For Developers)
Problem: Web Development Integration
Solution: Node.js with exceljs
Installation:
npm install exceljs
Code:
const ExcelJS = require('exceljs');
const fs = require('fs');
async function excelToJson() {
const workbook = new ExcelJS.Workbook();
await workbook.xlsx.readFile('data.xlsx');
const worksheet = workbook.getWorksheet(1);
const jsonData = [];
worksheet.eachRow((row, rowNumber) => {
if (rowNumber === 1) return; // Skip header
const rowData = {};
row.eachCell((cell, colNumber) => {
const header = worksheet.getRow(1).getCell(colNumber).value;
rowData[header] = cell.value;
});
jsonData.push(rowData);
});
fs.writeFileSync('output.json', JSON.stringify(jsonData, null, 2));
console.log('JSON exported successfully!');
}
excelToJson();
Pros:
- ✅ Great for web development
- ✅ Handles large files
- ✅ Integrates with Node.js apps
Cons:
- ❌ Requires Node.js knowledge
- ❌ Need to install packages
🤖 Advanced: AI-Powered Excel to JSON Conversion
For complex conversions, RowTidy can automatically:
Detect Data Structure
- Identifies nested relationships
- Suggests optimal JSON structure
- Handles complex Excel layouts
Intelligent Conversion
- Preserves data types
- Handles dates and numbers correctly
- Maintains relationships
Custom JSON Formats
- Array of objects
- Nested structures
- Custom key names
Validation
- Validates JSON syntax
- Checks data integrity
- Ensures proper formatting
Benefits:
- ✅ Handles complex structures automatically
- ✅ Preserves data types correctly
- ✅ Validates output JSON
- ✅ Saves time on manual conversion
📊 JSON Format Options
Option 1: Array of Objects
[
{"name": "John", "age": 30},
{"name": "Jane", "age": 25}
]
Option 2: Object with Keys
{
"users": [
{"name": "John", "age": 30},
{"name": "Jane", "age": 25}
]
}
Option 3: Nested Structure
[
{
"name": "John",
"contact": {
"email": "john@email.com",
"phone": "555-1234"
}
}
]
✅ Best Practices
Validate JSON
- Use JSON validator tools
- Check syntax before using
- Test with sample data
Handle Data Types
- Numbers as numbers (not strings)
- Dates in ISO format
- Booleans as true/false
Escape Special Characters
- Handle quotes, newlines, etc.
- Use proper escaping
- Validate special cases
Optimize Structure
- Choose appropriate format
- Minimize file size
- Consider nested vs flat
🔗 Related Guides
- Convert CSV to Excel Format - CSV conversion
- Excel Data Export Best Practices - Export strategies
- How to Prepare Data for APIs - API preparation
- Complete Excel Data Cleaning Guide - Comprehensive guide
- Excel Automation Techniques - Automation methods
📌 Conclusion
Exporting Excel to JSON opens up many possibilities for integration and data sharing. The methods in this guide will help you:
- Convert Excel data to JSON format
- Choose the right method for your needs
- Handle complex data structures
- Validate and optimize JSON output
For quick conversions: Use online tools
For automation: Use VBA or Python
For complex structures: Use RowTidy or specialized tools
Remember: Choose the method that matches your technical skills and requirements. Start simple and upgrade as needed.
✍️ Ready to convert Excel to JSON automatically?
👉 Try RowTidy today for intelligent Excel to JSON conversion with proper data type handling and validation. Get started with a free trial and see how AI-powered conversion can streamline your data exports.
This guide is part of our comprehensive series on Excel data management. Check out our other tutorials on data conversion, data export, and API integration for complete data solutions.